135 research outputs found

    How many planet-wide leaders should there be?

    Get PDF
    Geo-replication becomes increasingly important for modern planetary scale distributed systems, yet it comes with a specific challenge: latency, bounded by the speed of light. In particular, clients of a geo-replicated system must communicate with a leader which must in turn communicate with other replicas: wrong selection of a leader may result in unnecessary round-trips across the globe. Classical protocols such as celebrated Paxos, have a single leader making them unsuitable for serving widely dispersed clients. To address this issue, several all-leader geo-replication protocols have been proposed recently, in which every replica acts as a leader. However, because these protocols require coordination among all replicas, commiting a client's request at some replica may incure the so-called "delayed commit" problem, which can introduce even a higher latency than a classical single-leader majority-based protocol such as Paxos. In this paper, we argue that the "right" choice of the number of leaders in a geo-replication protocol depends on a given replica configuration and propose Droopy, an optimization for state machine replication protocols that explores the space between single-leader and all-leader by dynamically reconfiguring the leader set. We implement Droopy on top of Clock-RSM, a state-of-the-art all-leader protocol. Our evaluation on Amazon EC2 shows that, under typical imbalanced workloads, Droopy-enabled Clock-RSM efficiently reduces latency compared to native Clock-RSM, whereas in other cases the latency is the same as that of the native Clock-RSM

    DRAG: Divergence-based Adaptive Aggregation in Federated learning on Non-IID Data

    Full text link
    Local stochastic gradient descent (SGD) is a fundamental approach in achieving communication efficiency in Federated Learning (FL) by allowing individual workers to perform local updates. However, the presence of heterogeneous data distributions across working nodes causes each worker to update its local model towards a local optimum, leading to the phenomenon known as ``client-drift" and resulting in slowed convergence. To address this issue, previous works have explored methods that either introduce communication overhead or suffer from unsteady performance. In this work, we introduce a novel metric called ``degree of divergence," quantifying the angle between the local gradient and the global reference direction. Leveraging this metric, we propose the divergence-based adaptive aggregation (DRAG) algorithm, which dynamically ``drags" the received local updates toward the reference direction in each round without requiring extra communication overhead. Furthermore, we establish a rigorous convergence analysis for DRAG, proving its ability to achieve a sublinear convergence rate. Compelling experimental results are presented to illustrate DRAG's superior performance compared to state-of-the-art algorithms in effectively managing the client-drift phenomenon. Additionally, DRAG exhibits remarkable resilience against certain Byzantine attacks. By securely sharing a small sample of the client's data with the FL server, DRAG effectively counters these attacks, as demonstrated through comprehensive experiments

    Nondifferentiable mathematical programming involving (G,β)-invexity

    Full text link

    Towards Scaling Blockchain Systems via Sharding

    Full text link
    Existing blockchain systems scale poorly because of their distributed consensus protocols. Current attempts at improving blockchain scalability are limited to cryptocurrency. Scaling blockchain systems under general workloads (i.e., non-cryptocurrency applications) remains an open question. In this work, we take a principled approach to apply sharding, which is a well-studied and proven technique to scale out databases, to blockchain systems in order to improve their transaction throughput at scale. This is challenging, however, due to the fundamental difference in failure models between databases and blockchain. To achieve our goal, we first enhance the performance of Byzantine consensus protocols, by doing so we improve individual shards' throughput. Next, we design an efficient shard formation protocol that leverages a trusted random beacon to securely assign nodes into shards. We rely on trusted hardware, namely Intel SGX, to achieve high performance for both consensus and shard formation protocol. Third, we design a general distributed transaction protocol that ensures safety and liveness even when transaction coordinators are malicious. Finally, we conduct an extensive evaluation of our design both on a local cluster and on Google Cloud Platform. The results show that our consensus and shard formation protocols outperform state-of-the-art solutions at scale. More importantly, our sharded blockchain reaches a high throughput that can handle Visa-level workloads, and is the largest ever reported in a realistic environment.Comment: This is an updated version of the Chain of Trust: Can Trusted Hardware Help Scaling Blockchains? paper. This version is to be appeared in SIGMOD 201

    The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region

    Get PDF
    Data and code availability The authors declare that the majority of the data supporting the findings of this study are available through the links given in the paper. The unpublished data are available from the corresponding author upon request. The new estimate of Tibetan soil carbon stock and R code are available in a persistent repository (https://figshare.com/s/4374f28d880f366eff6d). Acknowledgements This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA20050101), the National Natural Science Foundation of China (41871104), Key Research and Development Programs for Global Change and Adaptation (2017YFA0603604), International Partnership Program of the Chinese Academy of Sciences (131C11KYSB20160061) and the Thousand Youth Talents Plan project in China. Jinzhi Ding acknowledges the General (2017M620922) and the Special Grade (2018T110144) of the Financial Grant from the China Postdoctoral Science Foundation.Peer reviewedPublisher PD

    State-machine replication for planet-scale systems

    Get PDF
    Online applications now routinely replicate their data at multiple sites around the world. In this paper we present Atlas, the first state-machine replication protocol tailored for such planet-scale systems. Atlas does not rely on a distinguished leader, so clients enjoy the same quality of service independently of their geographical locations. Furthermore, client-perceived latency improves as we add sites closer to clients. To achieve this, Atlas minimizes the size of its quorums using an observation that concurrent data center failures are rare. It also processes a high percentage of accesses in a single round trip, even when these conflict. We experimentally demonstrate that Atlas consistently outperforms state-of-The-Art protocols in planet-scale scenarios. In particular, Atlas is up to two times faster than Flexible Paxos with identical failure assumptions, and more than doubles the performance of Egalitarian Paxos in the YCSB benchmark.H2020 - Horizon 2020 Framework Programme(825184

    SVIP Induces Localization of p97/VCP to the Plasma and Lysosomal Membranes and Regulates Autophagy

    Get PDF
    The small p97/VCP-interacting protein (SVIP) functions as an inhibitor of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we show that overexpression of SVIP in HeLa cells leads to localization of p97/VCP at the plasma membrane, intracellular foci and juxtanuclear vacuoles. The p97/VCP-positive vacuolar structures colocalized or associated with LC3 and lamp1, suggesting that SVIP may regulate autophagy. In support of this possibility, knockdown of SVIP diminished, whereas overexpression of SVIP enhanced LC3 lipidation. Surprisingly, knockdown of SVIP reduced the levels of p62 protein at least partially through downregulation of its mRNA, which was accompanied by a decrease in starvation-induced formation of p62 bodies. Overexpression of SVIP, on the other hand, increased the levels of p62 protein and enhanced starvation-activated autophagy as well as promoted sequestration of polyubiquitinated proteins and p62 in autophagosomes. These results suggest that SVIP plays a regulatory role in p97 subcellular localization and is a novel regulator of autophagy

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    XFT: Practical fault tolerance beyond crashes

    No full text
    corecore